$\alpha$ -bromo- $\beta$ -methoxy isovaleric acid, which is reported to melt at 77°.<sup>15</sup>

Methyl  $\beta$ -Methoxyisovalerate.—This ester was prepared in 45% yield by esterification of the acid with methanolic hydrogen chloride, but it was found advantageous to esterify the mixture from the haloform reaction directly without isolation of the acid.

The ether residue, obtained from the haloform reaction as described above, was refluxed for eight hours with 100 g. of dry methanol containing 10% of dry hydrogen chloride; about two-thirds of the methanol was removed under reduced pressure, the residue poured into water and the solution neutralized with solid sodium carbonate. The ester layer was separated, the water layer washed with three portions of ether, and the combined ester-ether solutions dried and distilled. The ester was obtained in 29% yield (based on the methyl ketone); b. p.  $57-64^\circ$  (15 mm.),  $n^{22}$ p 1.4158; the values agree with those of Wagner.<sup>14</sup>

(15) Schrauth and Geller, Ber., 55, 2788 (1922).

The second fraction, b. p. 70–85 (15 mm.), when redistilled, yielded 17% of what appeared from the analysis to be methyl  $\alpha$ -bromo- $\beta$ -methoxyisovalerate. The analytical sample boiled at 86° (15 mm.),  $n^{23}$ D 1.4618.

Anal. Caled. for C<sub>7</sub>H<sub>13</sub>BrO<sub>3</sub>: C, 37.35; H, 5.82. Found: C, 37.62; H, 6.01.

#### Summary

The acid-catalyzed methanolysis and hydrolysis of 2,2-dimethyl-1-(3-aminopropyl)-ethyleneimine led in each case to cleavage of the bond between the tertiary carbon and the nitrogen of the imine ring. The structure of the products has been proved by synthesis, and the possible causes for the course of the cleavage reaction have been discussed.

ROCHESTER, N. Y.

**Received December 5, 1949** 

[CONTRIBUTION FROM THE STERLING-WINTHROP RESEARCH INSTITUTE]

# Amino- and Ammonium-alkylaminobenzoquinones as Curarimimetic Agents

## BY CHESTER J. CAVALLITO, ALBERT E. SORIA AND JAMES O. HOPPE

Recent investigations have led to the view that quaternary salts of known structure with a high curare-like physiological activity require the presence of at least two quaternary groups situated approximately 12 to 14 Å. apart in the molecule.<sup>1,2,3,4</sup> This communication describes a group of mono and bis quaternary derivatives of intense activity as well as the corresponding amines, some of which show unusually high curare-like activity. The active compounds described belong to class I or II in which R is H



and R' is an alkyl chain containing a tertiary amine or quaternary group.

Quinones (or hydroquinones and oxygen) are known to react with primary or secondary amines to yield mono- and 2,5-bis-substituted quinones, I.<sup>5,6,7,8</sup> These compounds also may be prepared by substitution of halogen or alkoxy groups in quinones by amines.<sup>9,10</sup> In such compounds the nitrogen is amide-like in character. By using amino-substituted acids there have been de-

- (1) Bovet and Bovet-Nitti, Experientia, 4, 325 (1948).
- (2) Barlow and Ing, Brit. J. Pharmacol., 3, 298 (1948).
- (3) Kimura, Unna and Pfeiffer, J. Pharmacol., 95, 149 (1949).
- (4) Paton, J. Pharmacy and Pharmacol., 1, 273 (1949).
- (5) Hofmann, Proc. Roy. Soc., London, 13, 4 (1863).
- (6) Suida and Suida, Ann., 416, 113 (1918).
- (7) Harger, THIS JOURNAL, 46, 2540 (1924).
  (8) Martynoff and Tsatsas, Bull. soc. chim., 29, 52 (1947).
- (8) Martynon and Isatsas, Bull. soc. chim., 29, 52 (1947).
   (9) Kehrmann, J. prakt. Chem., [2] 43, 260 (1891).
- (10) Jackson and Torrey, Am. Chem. J., 20, 395 (1898).

scribed the preparations of acidic amino-substituted quinones by these methods.<sup>8,11</sup> No published information was found describing quinone bases such as might be formed from dialkylaminoalkylamines. A few such bases appear to have been prepared in Germany during the last war for study as antibiotic types.<sup>12</sup>

It was found that the reaction of dialkylaminoalkylamines with hydroquinone and oxygen in aqueous or ethanol solutions was not as satisfactory as the reaction of simple amines<sup>7</sup> under these conditions. Vields of 2,5-bis-(dialkylamino-alkylamino)-benzoquinone could be markedly improved by conducting the reaction with amine, quinone and oxygen in dioxane, acetonitrile, benzene or similar solvents. With hydroquinone, the reaction was slower and depended upon prior oxidation to quinone. With a number of amines, the monosubstituted dialkylaminoalkylaminoquinone could be isolated by carrying out the reaction in a concentrated solution from which the prod-uct crystallized. The mono- and bis-substituted aminoalkylaminoquinones described were orange or red crystalline substances which formed orange or red quaternary salts that usually crystallized.

An interesting property of the 2-alkylaminoalkylaminoquinones is the ability to undergo disproportionation to the 2,5-bis derivative. In an inert solvent or neutral aqueous solutions, 2piperidylpropylaminobenzoquinone gave a 90%yield of the 2,5-bis derivative after four days at  $25^{\circ}$ .

<sup>(11)</sup> Suchanek, J. prakt. Chem., [2] 90, 467 (1914).

<sup>(12)</sup> P. B. Report 981, 33-35 (1945), mentions that the following were prepared for study as antibiotic types: 2,5-bis-(piperidylethylamino)-benzoquinone, 2-hydroxy-5-piperidylethylaminobenzoquinone, 2,5-dichtoro-3,6-bis-(diethylaminoethylamino)-benzoquinone and 2,5-bis-[\$p-(diethylaminoethoxy)-phenylamino]-benzoquinone.

The basic quinones and their quaternary salts were of mediocre antibacterial activity.<sup>13</sup>

Tests for curare-like activity were carried out first with mice, then with rabbits, the data being summarized in the table. The activity of the bis-quaternary quinones, which were prepared first, was found to be greater than that of a number of bis-onium compounds of similar distance between quaternary groups. This suggested involvement of the quinone structure in eliciting the physiological response, a point borne out by the equally high activity of the mono-onium derivatives and more surprisingly so with the activity of some of the quinoneamines. A sufficiently extensive series of compounds has been prepared to allow drawing some conclusions and raising speculations relative to the relationship of chemical structure, physical-chemical properties and curare-like activity of this series.

Evidence has accumulated that the higher curare-like activity of bis-onium compounds as compared with the mono-onium type results from an ionic bonding at two points at the site of action with the former thus producing a more firm attachment than would be obtained if only one coulombic bond were involved. With the bis-onium quinones of type III, the distance



between onium nitrogen centers<sup>14</sup> is approximately 11 Å. where x = 2, 14 Å, where x = 3, 17 Å. where x = 4 and 20 Å. where x = 5. The two test methods show some variations in order of activity, but where R is methyl or ethyl or NR<sub>2</sub> is piperidyl, all of the compounds are of high activity without very much variation with change in x. Similarly, in the mono-quaternary series, activity is high and does not vary much with chain length. With the mono- and bis-aminoquinones, changes in chain length produce more dramatic changes in activity, although there is little difference between the activity of corresponding mono- and bissubstituted derivatives. With derivatives of type IV, where R' is H and R" is H or the same as the side chain at position 2 of the quinone, compounds where x is 2 are inert but where x

(13) Tests by John W. Klimek of these laboratories showed the bacteriostatic concentrations (in mg. per cc.) with Streptococcus pyogenes, Salmonella typhi and Mycobacterium tuberculosis (H37Rv), respectively, of the following compounds to be: 2-(dimethylamino-benzoquinone, 0.05, 1.0 and 0.25; 2-(diethylamino-butylamino)-benzoquinone, 0.08, >1 and 0.35; 2,5-bis-(diethyl-aminoethylamino)-benzoquinone, 0.8, >1 and 0.35; 2,5-bis-(diethyl-aminopropylamino)-benzoquinone, 0.8, >1 and >1; and the bis benzochloride of the last, 0.25, >1 and 0.25.

(14) The molecule is assumed to be approximately maximally distended due to mutual repulsion of the two similarly charged groups.



is 3 to 5 may be quite active (for amines). Some correlation is possible between basicity of the nitrogen atom and activity; for example, the morpholinopropyl- and 2-(2-pyridyl)-ethyl- derivatives are much less active than the more basic piperidylpropyl- and diethylaminopropyl- derivatives. This relationship carries over somewhat to the quaternary series, in which the morpholino derivatives are less active than the others. It is also apparent that the nature of the 5-substituent in a 2-substituted member is not critical as evidenced by the similarity of activity of the monoand bis - diethylaminobutylaminobenzoquinones and 2-diethylaminobutylamino-5-methylaminobenzoquinone. A profound loss in activity results when R' in IV is changed from H to  $CH_3$  whether this be with the mono or bis derivative. The activity, nevertheless, appears to be as great whether R' is H or  $CH_3$  when the bis derivative is quaternized. Another point of interest was the observation that with amines or quaternaries in which x is 4 or 5, the duration of head-drop in the rabbit was much more prolonged and onset was slower than with the shorter group where x is 2 or 3.

The data with the bis-onium quinones is compatible with the suggestion that bis-onium curarimimetic compounds are bound to the site of action by two acidic groups located approximately 14 Å. apart at this site. With the bisonium quinones the difference between structure V and VI is not important in contributing to high



activity. With the mono- or bis-alkylaminoalkylaminoquinones, structure V is essential for high activity but is insufficient in itself and requires a basic nitrogen atom at least three carbons removed from the nitrogen attached to the ring. This indicates that both structure V and the basic group are involved in bonding at the site of action. Structure V could bond by two apparent methods; by chelation with a metal atom or by hydrogen bonding through the quinone oxygen with a hydrogen atom at the site of action. Structure VI could not form metal chelates. In the series of diethylaminoalkylaminobenzoquinones it is seen that curarimimetic activity increases with increase in length of the alkyl chain up to four carbon atoms. With these, activity increases as the distance between basic nitrogen atom

and hydrogen bonding or chelating structure increases to at least approximately 9 Å. As the distance between the structure V and the basic amino group in IV increases, one might expect that physiological activity would also increase until the distance reached coincided with the distance between the two corresponding points of attachment at the site of action. Compounds of greater length would show little change in activity since the molecule could flex to the required distance between the points involved. Since the amines show greater changes in activity with changes in molecular structure than do the quaternaries, the former may be more useful in yielding information as to the nature of the site of action. This would mean that the shortest distance  $(9 \pm \text{Å}.)$  between amine and structure V which yields high activity gives a clue as to the distance between the points of attachment at the site of action.

The differences in curare-like activity of the amines and quaternaries observed with changes in distance between bonding structures might be accounted for as follows. The quaternary ions of type  $R_4N^+$  are much more basic in character than ions of type R<sub>3</sub>HN<sup>+</sup>.<sup>15</sup> At physiological pH values, the amines form ions of the latter type; these may be considered to have a much smaller electrostatic field than do the quaternary type. One would expect, as a result, that the onium type could vary from optimum configuration much more than could the amines, which have a smaller electrostatic field and correspondingly shorter bonding radius, without producing as marked a change in bonding ability. An anionic group at the site of action would not be able to bind an ion of type R<sub>3</sub>NH<sup>+</sup> unless this group came within its immediate vicinity.<sup>15a</sup> This hypothesis would explain (a) the greater curarelike activity of the more basic tertiary amine quinones which could bind at greater distances from the optimum than could weaker basic groups and (b) the increase in activity upon quaternarization. In addition to basicity, steric hindrance may be involved with the amines in some of the effects produced. The lower activity of the dipropylaminopropylamino- as compared with diethylaminopropylamino- or more compact piperidylpropylamino- derivatives may be attributed to the steric hindrance offered by the alkyl groups on the basic nitrogen to approach to the site of action by the short-range bonding amine.

A remarkable correlation exists in the com-

(15) Moore and Winmill, J. Chem. Soc., 101, 1635 (1912).

(15a) The attractive force between an anion at the site of action and a highly dissociated cationic group of the curarimimetic agent is proportional to  $1/r^2$  where r is the distance between these ionic groups. The attractive force between an anion and a weakly dissociated cation is proportional to a value lying between  $1/r^2$  and  $1/r^4$ where the latter is proportional to the attractive force between two non-ionic dipoles. This would explain the more rapid drop in activity in the amine series as compared with the quaternaries as these varied from optimum configuration. plementary structure of the metaloporphyrins and these curarimimetic compounds.<sup>16</sup>

### Experimental

Diamines.—Diethylaminoethylamine,<sup>17</sup> diethylaminopropylamine<sup>18</sup> and aminoethylmorpholine<sup>19</sup> are commercially available. Diethylaminobutylamine<sup>30</sup> and 2-pyridylethylamine<sup>21</sup> were prepared by published procedures. The dimethylamino-, dipropylamino-, morpholino- and piperidyl-propylamines were prepared by addition of the appropriate secondary amine to acrylonitrile and reduction to the diamine.<sup>22</sup> Diethylamino- and piperidylamylamines were synthesized by reaction of diethylamino- and piperidylpropyl chlorides, respectively, with sodium ethyl cyanoacetate and proceeding as described for the preparation of the butylamino derivative.<sup>20</sup> The diethylaminoamylamine distilled at 80–81° at 8 mm.,  $n^{25}$ D 1.4450.<sup>23</sup> Piperidylamylamine distilled at 113–115° at 11 mm.,  $n^{25}$ D 1.4730.

Anal. Calcd. for  $C_{10}H_{22}N_2$ : N, 16.48. Found: N, 16.47.

3-Piperidylpropylmethylamine was prepared by treating piperidylpropyl chloride with methylamine; b. p. 95° at 15 mm.,  $n^{x_{\rm D}}$  1.4642.

2-(Aminoalkylamino)-benzoquinones.—To 10.8 g. (0.1 mole) of p-benzoquinone in 125 cc. of dioxane was added with cooling, 0.1 mole of the diamine. Oxygen was bubbled into the dark red solution through a fritted-glass gas-absorption tube for at least three hours and up to twenty hours (overnight). During the first hour, red or orange crystalline reaction product may begin to separate out of solution. The reaction mixture was cooled, the product was filtered off and recrystallized from hot ethanol-water solution. In the preparation of 2-(piperidylamyl-amino)-benzoquinone it was necessary to concentrate the

(16) Using hemin as an example, one has a relationship shown by VII which includes a metal group capable of forming chelate structures and two carboxyl groups which could be involved in salt formation with the curarimimetic agent resulting from an ionic exchange for the cation normally bound to the carboxyl groups. The impor-



tance of the metaloporphyrins in cellular respiration is well recognized and marked differences in specificity exist in the properties of natural physiological constituents containing such groups depending upon the characteristics of the protein fragment to which they are attached (Theorell, Advances in Enzymology, 7, 268 (1947), Interscience Publishers, Inc., New York, N. Y.). It may be rational to consider the possibility that curarimimetic agents act by blocking a metaloporphyrin group attached to a specific protein or at a particularly accessible location at the neuro-muscular junction. The distance between carboxyl groups is compatible with the activity of the quinone derivatives and other bis-quaternaries and the 9 Å. distance between carboxyl and chelating groups fits excellently the relationship pointed out with the mono-onium quinones and quinone amines. Experiments with 2,5-bis-(metbylamino)-benzoquinone and 2,5-bis-(dimethylamino)-benzoquinone showed that the former yielded a chelate complex with cupric acetate in aqueous solution but the latter did not.

(17) Royal Organic Chemical Co., Roselle, N. J.

(18) Sharples Chemicals, Inc.

(19) Carbide and Carbon Chemicals Corp.

(20) Huber, Clinton, Boehme and Jackman, THIS JOURNAL, 67, 1618 (1945).

(21) Kirchner, McCormick, Cavallito and Miller, J. Org. Chem., 14, 388 (1949).

(22) Whitmore, Mosher, Adams, Taylor, Chapin, Weisel and Yanko, THIS JOURNAL, 66, 725 (1944).

(23) Magidson and Grigorowsky, Ber., 69, 402 (1936), give b. p., 205-208°, n<sup>20</sup>D 1.4540.

0

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>O</b>                                                                            |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------|-----------|-------------|-------|--------|-------|--------|-------|----------|-------|---------------|---------------------------------|-------------|--|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     | 50    |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 ]2                                                                                | .Ē    |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 3                                                                                 | niz   |           |             |       |        |       |        |       |          |       | ~ .           |                                 |             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y                                                                                   | Le Le | ₩ Cor     | Anolyzes 07 |       |        |       |        |       |          |       | Curarin       | Curarimimetic dose, mg. per kg. |             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ő                                                                                   | lat   | 5 m. p.,  | Nitr        | ogen  | CI     | or Br | Ca     | rbon  | Hvd      | rogen |               |                                 |             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 or 5                                                                              | 3,6 Ā | "କ"ଂ⊂ି. ` | Calcd.      | Found | Caled. | Found | Calcd. | Found | Caled.   | Found | $LD_{50}$     |                                 |             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2-NH(CH_2) \cdot N(C_2H_3)$                                                        |       |           | 12.60       | 12.51 |        |       |        |       |          |       | 400           | $335 \pm 30$                    |             |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |       |           |             |       |        |       | 63 40  | 63 18 | 7 74     | 8 05  |               |                                 |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |       | -         |             |       | ••     |       | 01.10  | 01.24 | 0.00     | 9.00  | _             |                                 |             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |       |           |             |       |        |       | 07 71  | 07 90 | 0 10     | 0 00  |               |                                 |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-1411(C112)=14C61110                                                               | 11    |           | 11.29       | 10.97 |        |       | 07.71  | 07.30 | 0.12     | 0.30  | 20            | 10 = 1                          |             |  |
| CH,<br>2-NH(CH <sub>2</sub> )=NC <sub>4</sub> H <sub>2</sub> <sup>4</sup> H 176-177 10.14 9.98 69.53 69.03 8.75 8.97 22 16 ± 0.8<br>2-NH(CH <sub>2</sub> )=NC <sub>4</sub> H <sub>2</sub> <sup>4</sup> H 195-196 12.22 11.94 68.40 68.22 5.29 5.36 300 130 12<br>2-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 103-106 64.48 64.28 9.02 9.04 33 16 ± 1<br>2-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 134-135 16.65 16.65 64.20 64.21 9.58 9.40 535 400<br>2,5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 122-124 15.37 15.18 65.89 65.91 9.96 9.68 50 34 ± 2<br>2,5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 122-124 15.37 15.18 65.89 65.91 9.96 9.68 50 34 ± 2<br>2,5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 105-106 14.28 14.12 67.45 67.69 10.28 10.41 22 11 ± 1<br>2,5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 105-106 14.28 14.12 67.45 67.69 10.28 10.41 22 11 ± 1<br>2,5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 109-172 15.71 15.20<br>2,5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 109-101 15.38 15.38 50.32 59.31 7.74 7.82<br>2,5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 109-102 14.28 14.16 61.19 80.98 8.22 8.50 1500 760<br>2,5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 117-118 13.47 13.75 69.19 69.48 9.48 9.48 9.58 9.74 1200 800<br>CH<br>2,5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) C 1 136-137 12.93 12.92 16.36 15.92<br>2.5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 117-118 13.47 13.75 69.19 69.48 9.74 1200 800<br>CH<br>2,5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H 4 26 <sup>2</sup> 8.17 8.13 23.28 23.70 0.9 .3 $\cdot$ 4 $\pm$ 0.03 0.152 0.07<br>CH<br>2,5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H A 113 <sup>2</sup> 7.79 7.57 72 2.22 2.92<br>2.5-NH(CH <sub>2</sub> )=N(C <sub>4</sub> H <sub>2</sub> ) H A 426 <sup>2</sup> 8.17 8.13 23.28 23.70 0.9 .3 $\cdot$ 4 $\pm$ 0.08 0.02 .71 .34<br>2,5-NH(CH <sub>2</sub> )N(C <sub>4</sub> H <sub>2</sub> ) H A 13 <sup>2</sup> 7.79 7.57 72 2.22 2.92<br>2.5-NH(CH <sub>2</sub> )N(C <sub>4</sub> H <sub>2</sub> ) H A 225 8.84 9.28 11.87 1.5 .5 $\pm$ 0.16 0.074<br>2,5-NH(CH <sub>2</sub> )N(C <sub>4</sub> H <sub>2</sub> ) H A 225 9.84 <sup>8</sup> 9.28 11.87 1.5 .5 $\pm$ 0.16 1.02 42 0.22<br>2,5-NH(CH <sub>2</sub> )N(C <sub>4</sub> H <sub>2</sub> ) H A 423 0.02 .10 0.74<br>2,5-NH(CH <sub>2</sub> )N(C <sub>4</sub> H <sub>2</sub> ) H A 225 0.85 0.1 8 9.77 80.13 23.28 20.50 1.8 $\cdot$ 4 $\pm$ 0.02 .126 0.99<br>2,5-NH(CH <sub>2</sub> )N(C <sub>4</sub> H <sub>2</sub> ) H A 225 0.85 1.8 9.07 26.19 25.68 0.6 $\cdot$ 4 $\pm$ 0.02 .20 0<br>2,5-NH(CH <sub>2</sub> )N(C <sub>4</sub> H <sub>2</sub> ) H A 2242 0.025 0.00 3.5 $\pm$ 0.2 $\cdot$ 0.2 $\cdot$ 0.46 0.03<br>2,5-NH(CH <sub>2</sub> )=NC <sub>4</sub> H <sub>4</sub> <sup>4</sup> H A 230 dec. 9.68 9.32 7.47 27.20 0 9 3 38 $\pm$ 3 $\pm$ 0.02 .146 .073<br>2,5-NH(CH <sub>2</sub> )=NC <sub>4</sub> H <sub>4</sub> <sup>4</sup> H A 248 dec. 9.63 9.38 27.47 27.20 9 3 $\cdot$ 3 $\pm$ 0.02 .146 .073<br>2,5-NH( |                                                                                     |       | -         | 40.00       | 40 80 |        |       |        |       |          |       |               |                                 |             |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-N-(CH <sub>2</sub> ) 8-N C5H 10 °                                                 | н     | 160-161   | 10.69       | 10.72 |        |       | 68.69  | 68.65 | 8.44     | 8.67  | 490           | $375 \pm 40$                    |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ĊH,                                                                                 |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2-NH(CH_2)_5-NC_5H_{10}^c$                                                         | н     | 176-177   | 10.14       | 9.98  |        |       | 69.53  | 69.63 | 8.75     | 8.97  | 22            | $16 \pm 0.8$                    |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-NH(CH <sub>2</sub> )=-NC <sub>5</sub> H <sub>5</sub> <sup>d</sup>                 | н     | 195-196   | 12.22       | 11.94 |        |       | 68.40  | 68.22 | 5.29     | 5.36  | 300           | $130 \pm 12$                    |             |  |
| 5-NRICH, 2,5-NRICH, 3, 2,5-NRICH, 3, NICH, H 124-135 16.65 16.65 64.20 64.21 9.58 9.40 535 400              4.2,5-NRICH, 3, NICH, H 125-126 18.17 17.65 62.35 61.85 9.16 9.16              4.2,5-NRICH, 3, NICH, H 122-124 15.37 15.18 65.80 65.91 9.96 9.68 50 34 ± 2              4.23 350              4.5 2 350              4.5 2 12.96 13.3 22 21.2 96 11 22 11 = 1              4.25 350              4.5 80 65.91 9.96 9.68 50 34 ± 2              4.22 350              4.23 350              4.23 350              4.23 350              4.23 350              4.5 80 65.91 9.96 9.68 50 34 ± 2              4.23 350              4.23 350              4.23 350              4.23 350              4.23 11 = 1              4.25 350              5.NRI(CH0), NC(H0), H 190-10 15.38 15.38 59.32 59.31 7.74 7.82              5.NRI(CH0), NC(H0) H 190-179 15.71 15.20              5.NRI(CH0)-NC(H0) H 190-179.18 14.42 14.20 68.00 68.24 9.34 9.34 9.51 19 9 ± 0.5              5.NRI(CH0)-NC(H0) H 170-181 14.42 14.20 68.00 68.24 9.34 9.49 19 9 ± 0.5              2.5.NRI(CH0)-NC(H0) H 117-118 13.47 13.75 69.19 69.48 9.68 9.74 1200 800              CH              2.5.NRI(CH0), NC(H0) H 4 4 255 8.17 8.13 23.28 23.70 0.9 .4 ± 0.03 0.152 0.07              2.NRI(CH0), NC(H0) H A 255 8.17 8.13 23.28 23.70 0.9 .4 ± 0.03 0.152 0.07              2.NRI(CH0), NC(H0) H A 255 9.31 7.74 7.81 1.87 1.5 .5 ± 0.05 .12 .084              2.5 NRI(CH0), NC(H0) H B 2 05-2256 9.386 9.88 11.87 11.87 1.5 .5 ± 0.05 .12 .084              2.5 NRI(CH0), NC(H0) H A 255 8.17 8.13 23.28 23.70 0.9 .4 ± 0.03 0.152 0.07              2.5 NRI(CH0), NC(H0) H A 230 dec 9.08 9.28 11.48 11.88 2.5 ± 0.1 8 ± 0.06 .042 .029              2.5 NRI(CH0), NC(H0) H B 2 05-2256 9.386 9.38 11.87 11.87 1.5 .5 ± 0.05 .12 .084              2.5 NI(CH0), NC(H0) H A 230 dec 9.06 9.3 27.76 5 .0.7 ± 0.05 .3 ± 0.02 .146 .073              2.5 NI(CH0), NC(H0) H A 2420 02.5 10.24 29.25 28.85 1.8 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     | н     | 103 - 106 |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |       |           |             |       |        |       |        | *     | 0.02     | 0.01  |               |                                 |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     | н     | 134 - 135 | 16.65       | 16.65 |        |       | 64.20  | 64.21 | 9.58     | 9 40  | 535           | 400                             |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |       |           |             |       |        |       |        |       |          |       | 000           | 100                             |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |       |           |             |       |        |       |        |       |          |       | 50            | $34 \pm 2$                      |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |       |           |             |       |        |       | 00.00  | 00,01 | 0.00     | 0.00  |               |                                 |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |       |           |             |       |        |       | 67 45  | 67 60 | 10 99    | 10 41 |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       |           |             | -     |        |       | 07.40  | 07.09 | 10.28    | 10.41 |               |                                 |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |       |           |             |       |        |       |        |       |          |       | 11            | 9.0                             |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     | н     | 169-172   | 15.71       | 15.20 |        |       |        |       |          |       |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       | 400 400   |             |       |        |       | ***    |       | <b>.</b> |       |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $\begin{array}{c} CH_{1} \\ CH_{2} \\ 2,5-NH(CH_{2})_{1}N(C_{2}H_{3})_{2} \\ 2-NH(CH_{2})_{2}N(C_{2}H_{3})_{3} \\ H & A \ dec^{.6} \\ \hline \\ & \\ & \\ 225 \ 8.84 \ 9.28 \\ \hline \\ & \\ & \\ 2-NH(CH_{2})_{2}-NC_{4}H_{10}^{.6} \\ H & A \ 255 \ 8.17 \ 8.13 \ 23.28 \ 23.70 \\ \hline \\ & \\ & \\ & \\ 2,5-NH(CH_{2})_{1}N(C_{2}H_{3})_{2} \\ H & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2,5-NH(CH_2)_{2}-NC_{5}H_{10}^{\circ}$                                             | н     | 179–181   | 14.42       | 14.26 |        |       | 68.00  | 68.24 | 9.34     | 9.59  | 19            | $9 \pm 0.5$                     |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,5-N-(CH2)3-NC5H10°                                                                | н     | 117–118   | 13.47       | 13.75 |        |       | 69.19  | 69.48 | 9.68     | 9.74  | 1200          | 800                             |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L H                                                                                 |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     | C1    | 136-137   | 12 93       | 12 92 | 16 36  | 15 92 |        |       |          |       |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       |           | 12.00       | 12.02 | 10.00  | 10.02 |        |       |          |       |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-1111(0112)111(02116)1                                                             |       |           | 8 84        | 0.28  |        |       |        |       |          |       | 3.6           | 0 9 + 0 08                      |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-NH(CHa) N(CaHa)                                                                   | ΗA    |           |             |       |        | 22 92 |        |       |          |       |               |                                 | 0 152 0 07  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • • • • • •                                                                         |       |           |             |       |        |       |        |       |          |       |               |                                 | •           |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       |           | -           |       |        |       |        |       |          |       |               | -                               |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       |           |             |       |        |       |        |       |          |       |               |                                 | .146 .073   |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2,5-NH(CH_2)_{5}N(C_2H_5)_2$                                                       | НА    |           | 9.18        | 9.07  | 26.19  | 25.68 |        |       |          |       | 0.6           | $.4 \pm 0.02$                   |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     | ~ ~   |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $\begin{array}{c} 5-\mathrm{NH}(\mathrm{CH}_2)_2-\mathrm{NC}_4\mathrm{H}_3^{di} \\ 2,5-\mathrm{NH}(\mathrm{CH}_2)_2-\mathrm{NC}_4\mathrm{H}_8\mathrm{O}^e & \mathrm{H} \ \mathrm{A} \ 231-234 \ 10.10 \ 9.84 \ 28.02 \ 28.12 \\ & \mathrm{dec.} \end{array} \qquad \begin{array}{c} 95 & 33 \pm 3 \\ \\ 33 \pm 3 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |       |           |             |       |        |       |        |       |          |       |               |                                 | .126 .080   |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     | ΗA    | 242       | 10.25       | 10.24 | 29.25  | 28.85 |        |       |          |       | 4.5           | $2.4 \pm 0.2$                   |             |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| 2,5-NH(CH2)=-NC4H80 <sup>6</sup> H A 248 dec.       9.63       9.33 27.47 27.20       9 $3.6 \pm 0.1$ 2,5-NH(CH2)=-NC5H10 <sup>6</sup> H A 253 dec.       9.68       9.63 27.60 27.35       0.9 $0.3 \pm 0.02$ .095       .066         2,5-N-(CH2)=-NC5H10 <sup>6</sup> H A 245-250<br>dec.       9.25 $8.71 26.39 25.95$ 2.0 $.9 \pm 0.05$ .140       .080 $             2,5-NH(CH2)=-NC5H106       H A 264-270       8.83       8.90 25.19 25.25                                                             $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2,5-NH(CH_2)_2-NC_4H_8O^e$                                                         | нА    | 231 - 234 | 10.10       | 9.84  | 28.02  | 28.12 |        |       |          |       | 95            | $33 \pm 3$                      |             |  |
| $\begin{array}{c} 2.5-\mathrm{NH}(\mathrm{CH}_2)_{3}-\mathrm{NC}_{5}\mathrm{H}_{10}{}^{\circ} & \mathrm{H} \ \ \mathrm{A} \ \ 253 \ \mathrm{dec.} & 9.68 \\ 2.5-\mathrm{N-(\mathrm{CH}_2)_{3}-\mathrm{NC}_{5}\mathrm{H}_{10}{}^{\circ} & \mathrm{H} \ \ \mathrm{A} \ \ 253 \ \mathrm{dec.} & 9.68 \\ \mathrm{dec.} & 9.25 \\ \mathrm{CH}_{1} \\ 2.5-\mathrm{NH}(\mathrm{CH}_2)_{3}-\mathrm{NC}_{5}\mathrm{H}_{10}{}^{\circ} & \mathrm{H} \ \ \mathrm{A} \ \ 245-250 \\ \mathrm{dec.} & \mathrm{dec.} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |       |           |             |       |        |       |        |       |          |       |               |                                 |             |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,5-NH(CH2)3-NC4H3O <sup>e</sup>                                                    |       |           |             |       |        |       |        |       |          |       | •             |                                 |             |  |
| dec.         CH3         2.5-NH(CH3)5-NC3H10 <sup>c</sup> H A 264-270         8.83         8.90         25.19         25.25         .6         .2         .6         .2         .6         .6         .6         .6         .6         .6         .6         .6         .6         .6         .6         .6         .6         .6         .7         .6         .7         .6         .7         .6         .7         .6         .7         .6         .7         .7         .7         .7         .7         .7         .7         .7         .7         .7         .7         .7         .7         .7         .7         .7         .7         .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,5-NH(CH <sub>2</sub> ) <sub>8</sub> -NC <sub>5</sub> H <sub>10</sub> <sup>c</sup> | ΗА    | 253 dec.  | 9.68        | 9.63  | 27.60  | 27.35 |        |       |          |       | 0.9           | $0.3 \pm 0.02$                  | .095 $.066$ |  |
| $CH_3$ 2.5-NH( $CH_2$ ) <sub>5</sub> -NC <sub>6</sub> H <sub>10</sub> <sup>c</sup> H A 264-270       8.83       8.90       25.19       25.25       .6       .2 ± 0.01       .132       .056         dec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,5-N-(CH <sub>2</sub> ) - NC <sub>5</sub> H <sub>10</sub> °                        | НА    |           | 9.25        | 8.71  | 26.39  | 25.95 |        |       |          |       | 2.0           | $.9 \pm 0.05$                   | . 140 . 080 |  |
| $2.5-NH(CH_2)_{6}-NC_{6}H_{10}^{c} HA 264-270 8.83 8.90 25.19 25.25 .6 .2 \pm 0.01 .132 .056 dec.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH.                                                                                 |       | dec.      |             |       |        |       |        |       |          |       |               |                                 |             |  |
| dec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     | нΛ    | 264_270   | 8 83        | 8 00  | 25 10  | 95 95 |        |       |          |       | 6             | $2 \pm 0.01$                    | 132 056     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0-111(C112/0-11C01110                                                             | шл    |           | 0.00        | 3.00  | 20.10  | 20.20 |        |       |          |       | 10            |                                 |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>d</i> -tubocurarine                                                              |       | ucc.      |             |       |        |       |        |       |          |       | $.6 \pm 0.02$ | 2,4 = 0.02                      | .187 .146   |  |

d-tubocurarine

 $.6 \pm 0.02$   $.4 \pm 0.02$  .187 .146

<sup>a</sup> Melting point indefinite. <sup>b</sup> Dihydrate; H<sub>2</sub>O calcd., 6.03%; found (Karl Fischer Method), 5.49%. <sup>c</sup>  $-NC_6H_{10} = piperidyl$ . <sup>d</sup>  $-NC_6H_6 = 2$ -pyridyl. <sup>e</sup>  $-NC_4H_8O = morpholino$ ; A = methyl bromide; B = benzyl chloride.

reaction mixture to obtain separation of the product. The products progressed from orange-yellow to dark red in color with increase in molecular weight. Vields ranged from 45 to 65%. The 2-monosubstituted aminoalkylamino-quinones obtained are shown in the table; their preparation is facilitated by the low solubility in dioxane which allows separation of the desired product before reaction with a second molecule of diamine can take place.

2,5-Bis-(aminoalkylamino)-benzoquinones.—To 0.1 mole of p-benzoquinone in 125 to 200 cc. of dioxane was added with cooling, 0.2 mole of diamine and oxygen was bubbled into the solution for twenty hours. The reaction mixture was kept warm, where necessary, to prevent separation of the monosubstituted derivative. Upon cooling the reaction mixture the 2,5-disubstituted derivatives crystallized from solution with some of the preparations and these were recrystallized from dioxane or from hot ethanol-water solution. The solubility in dioxane of the bis derivatives obtained from dimethylaminopropyl-, dipropylaminopropyl-, diethylaminobutyl- and diethylaminoamyl-amines made it necessary to first concentrate the reaction solution and dilute with water to obtain satisfactory yields. This group could also be recrystallized from hot Skellysolve C.

These derivatives were orange to red crystalline products obtained in from 30 to 50% yield.

Mixed as well as symmetric disubstituted derivatives were also prepared by treating the isolated 2-mono substituted derivatives with a second molar equivalent of diamine and oxygen in warm dioxane (45 to 65% yields).

The substituted quinones also could be prepared from hydroquinone, diamine and oxygen, but longer reaction

# TABLE I

time was required. The reaction of 2-chlorohydroquinone with diethylaminopropylamine yielded primarily 2,5-bis-(diethylaminopropylamino)-benzoquinone by substitution and addition of diamine.

With the use of diethylaminopropylamine, hydroquinone and oxygen in aqueous solution only a 5% yield of the bisderivative was obtained; when a mole of acetic acid was added with each mole of diamine, an 8% yield was obtained.

2-Mono- and 2,5-Bis-(3-piperidylpropylmethylamino)benzoquinone.—These two compounds were prepared in dioxane in the usual manner but generally were obtained as a mixture. The products were separated by concentration of the reaction mixture and recrystallization of the precipitate from hot benzene from which the monosubstituted derivative separated upon cooling. Concentration of the benzene solution and addition of Skellysolve B resulted in crystallization of the bis derivative. These two compounds were more soluble in non-polar solvents than were the analogs with a hydrogen on the nitrogen attached to the quinone ring.

2, s-Dichloro-3, 6-bis-(diethylaminopropylamino)-ben-zoquinone. A solution of 7.3 g. (0.03 mole) of chloranil and 15.6 g. (0.12 mole) of diethylaminopropylamine in 100 cc. of dioxane was heated on a steam-bath for six hours. The solution was concentrated to one-half volume, cooled and the crystalline precipitate filtered off. The desired product was recrystallized from hot ethanol as bronze-colored needles, yield 7.5 g. (60%).

#### Quaternarization

A. Benzyl Chloride Quaternaries.—A solution of 0.02 mole of dibasic quinone and 0.08 mole of benzyl chloride in 75 cc. of 95% ethanol was refluxed for four hours, cooled and diluted with ether to precipitate the bis-guaternary. The amorphous precipitate was dissolved in alcohol, treated with charcoal, filtered and reprecipitated with ether. The reprecipitation was repeated once more. The products were dried at  $60^{\circ}$  over phosphorus pentoxide and paraffin *in vacuo*. Vields were approximately 80%. The bis benzochloride from the dimethyl-aminopropylamine derivative formed a crystalline dihydrate; the diethylaminopropylamino derivative also crystallized. The bis-benzochlorides were red in color excepting the 3,6-dichloro- derivative which was brown and gave purple aqueous solutions.

B. Methyl Bromide Quaternaries.—Methyl bromide gas was passed into a warm solution of 0.02 mole of the aminoalkylaminoquinone in 50 cc. of ethanol and 100 cc. of dioxane for about one hour. Brick-red crystalline products separated during the reaction in some instances, in others it was necessary to add ether which precipitated amorphous quaternaries that soon crystallized upon standing. Yields of pure products were approximately 90%.

In the reaction of methyl bromide with the mono-substituted quinones to produce mono-quaternaries, the time of reaction and the heating should be kept to a minimum, otherwise considerable disproportionation to the bis compound takes place.

Basicity of the Alkylaminoalkylaminoquinones.—The relative basicity of some of the amines was determined by dissolving one millimole of the aminoquinone in 75 to 85 cc. of water to which was added enough 0.1 N hydrochloric acid solution to supply a 50% excess of acid above the quantity required for each basic amino group. The solution was titrated potentiometrically with 0.1 N sodium hydroxide solution and the pH was observed at which the excess acid was neutralized. This represented the pK(salt) and was a much sharper end-point than could be obtained for the  $pK_B$ . For the 2-monosubstituted quinones, the pK(salt) values were: piperidylpropylamino, 5.2; pyridylethylamino, 3.5. The 2,5-bis derivatives gave the following values for the bis hydrochlorides: morpholinopropylamino-, 3.7; diethylaminoethylamino-, 4.5; diethylaminopropylamino-, 5.5; dipropylaminopropylamino-, 5.5; piperidylpropylamino-, 5.2; piperidylpropylmethylamino, 6.0.

Biological Tests.—Preliminary tests for curare-like activity were made in mice and rabbits. Thompson's<sup>24</sup> inclined screen procedure for the biological assay of insulin was modified and adapted to the quantitative evaluation of curarimimetic activity in mice. Groups of ten mice were injected subcutaneously with graduated doses given in a volume of 0.01 cc. per gram of body weight and placed in 6 by 18 inch stalls on a screen inclined at an angle of 50° from the horizontal. Those mice developing typical skeletal muscle paralysis and abruptly sliding off the screen were considered positive reactors. The effective dose producing paralysis in 50% of the mice (BD<sub>40</sub>) and the dose causing death by subcutaneous injection in a similar manner in 50% of the mice (LD<sub>50</sub>) were estimated by the method of Miller and Tainter.<sup>26</sup> The more active compounds were tested by the rabbit "head-drop, HD<sub>50</sub>" procedure. Graduated doses were injected intravenously at a rate of 12 cc. per minute into groups of three to ten rabbits per dose level. A positive response occurred when the head dropped forward to the supporting surface and could not be raised in response to a light tap on the back of the animal. The dose producing head-drop in 50% of the rabbits (HD<sub>50</sub>) and the intravenous (LD<sub>50</sub>) were also estimated by the method of Miller and Tainter.

Acknowledgments.—We wish to acknowledge the technical assistance of Mrs. J. Prudente, Miss Kathleen Kraft and Mr. D. K. Seppelin and are indebted to Mr. M. E. Auerbach, Mr. K. Fleischer and Staff for the microanalyses.

### Summary

2,5-Bis-onium-alkylaminobenzoquinones are potent curarimimetic compounds. The 2-monoonium derivatives are likewise active and represent the first examples of monoquaternaries of known structure of such order of activity ( $ED_{50} < 1$  mg. per kg.).

Mono- and bis-aminoalkylaminobenzoquinones demonstrate unusually high curare-like activity. The activity of these is more susceptible to structural variations than is that of the quaternaries. Factors involved include basicity of the tertiary amino group, distance between the tertiary amine and quinone group and size of the alkyl groups on the basic nitrogen. The activity of the quinone amines is dependent upon the presence of a hydrogen on the nitrogen attached to the quinone ring.

Some speculations are made relative to the site of action of these drugs.

RENSSELAER, N. Y. RECEIVED OCTOBER 11, 1949

<sup>(24)</sup> Thompson, Endocrinology, 39, 62 (1946).

<sup>(25)</sup> Miller and Tainter, Proc. Soc. Exp. Biol. Med., 57, 261 (1944).